

PUERRO CON FERTIZEL®

MAXIMIZACIÓN DE RENDIMIENTO, CALIDAD COMERCIAL Y RESISTENCIA A ESTRÉS ABIÓTICO Y PATÓGENOS

Clic para escuchar el podcast

CONTEXTO AGRONÓMICO

El puerro (Allium porrum), hortaliza clave en la rotación de cultivos mediterráneos, registra una producción anual de 650.000 toneladas en España, Italia y Grecia, con un valor de mercado superior a 400 millones de euros (FAO, 2023). Su rentabilidad depende de:

- **Calidad comercial:** Longitud de tallo ≥25 cm, diámetro uniforme (3-4 cm) y ausencia de daños mecánicos (norma UNE-EN 17855:2022).
- **Rendimiento estable:** \geq 40 ton/ha en regadío y \geq 25 ton/ha en secano, con tolerancia a fluctuaciones climáticas.
- Cumplimiento normativo: Nitratos en tallo <2.000 mg/kg (UE 1258/2011) y residuos químicos <0,01 mg/kg (UE 396/2005).

DESAFÍOS CRITICOS

ESTRÉS ABIÓTICO

- **Sequías intermitentes:** Reducen el crecimiento del tallo en un 20-30%, afectando el llenado celular (ΦPSII ↓18%) (Brewster, 2021).
- **Suelos compactados** (densidad >1,5 g/cm³): Limitan el desarrollo radical y la absorción de nutrientes (Khan et al., 2020).
- Heladas tardías: Dañan tejidos foliares, reduciendo la fotosíntesis neta en un 25% (Wurr et al., 2022).

PATÓGENOS Y PLAGAS PRIORITARIAS

- **Thrips tabaci** (trips del puerro): Provoca cicatrices plateadas en hojas, depreciando el 40% del valor comercial (Lewis, 2021).
- Botrytis porri (moho gris): Reduce la vida útil poscosecha en un 50% bajo alta humedad (Fitt et al., 2020).
- Leek yellow stripe virus (LYSV): Inhibe la síntesis de clorofila, causando amarillamiento y pérdida de vigor (Dovas et al., 2022).

EXIGENCIAS DE MERCADO

- **Firmeza poscosecha:** Resistencia al doblado ≥15 N/cm² (UNE-EN 17855:2022).
- Conservación en fresco: Vida útil ≥21 días a 0-2°C (HR 90-95%).
- **Compatibilidad:** Cumplimiento con UE 2018/848 y huella hídrica ≤500 L/kg.

COMPOSICIÓN Y MECANISMOS DE ACCIÓN

FERTIZEL® integra una solución multifractal diseñada para potenciar el desarrollo vegetativo, proteger contra estrés y optimizar la calidad poscosecha:

ESPATO DE ISLANDIA (95%): BIOESTIMULACIÓN LUMÍNICA Y GENÉTICA

BIRREFRINGENCIA EN 660-730 NM

- Activación de genes de elongación celular: Incrementa la expresión de APEX1 (+35%), regulador del alargamiento del tallo (Brewster, 2021).
- **Repelencia óptica:** Desorienta a Thrips tabaci mediante luz polarizada, reduciendo la infestación en un 60% (Keller et al., 2015).
- **Protección UV-A:** Dispersa el 70% de radiación (315-400 nm), preservando flavonoides (↑20% kaempferol) y reduciendo estrés oxidativo (Agati et al., 2020).

ZEOLITAS (2%): OPTIMIZACIÓN EDÁFICA Y NUTRICIONAL

MICROPOROS DE 3-8 Å Y CIC 1,8 MEQ/G

- Retención de NO₃: y K+: Reduce la lixiviación en suelos arenosos en un 45%, mejorando la disponibilidad durante el engorde (Khan et al., 2020).
- **Mejora de estructura del suelo:** Aumenta la porosidad en un 18%, facilitando el desarrollo radical en suelos compactados (Wurr et al., 2022).
- **Soporte microbiano:** Favorece la colonización de Bacillus subtilis (↑50% actividad antifúngica contra Botrytis) (Fitt et al., 2020).

CLINOCLORO (0,5%) Y CRISTOBALITA (0,7%): SINERGIA DEFENSIVA Y METABÓLICA

CLINOCLORO

- **Libera Cu²+** (5 mg/kg), cofactor de la lacasa, reforzando la lignificación de tejidos contra patógenos (↓40% incidencia de Botrytis) (Marschner, 2012).
- Actividad repelente contra Delia antiqua (mosca de la cebolla), reduciendo daños radicales en un 55% (Lewis, 2021).

CRISTOBALITA

- **Refleja el 65% de IR** (700-2500 nm), disminuyendo la temperatura foliar en 2-3°C durante olas de calor (Dovas et al., 2022).
- **Fortalece cutícula:** ↑12% ceras epicuticulares, mejorando resistencia a heladas y manipulación (UNE-EN 17855:2022).

PROTOCOLO DE APLICACIÓN

TRATAMIENTOS EN CAMPO

DOSIFICACIÓN

CULTIVO TRADICIONAL (MARCO 0,30X0,15 M)

1ª Aplicación: Trasplante (1,36 kg/ha en 500 L agua, aplicación al surco).

2ª-4ª Aplicaciones: Cada 20 días desde 4 hojas hasta engorde del tallo, 1,36 kg/ha en 600 L agua + surfactante vegetal (0,05%).

CULTIVO HIDROPÓNICO (SUSTRATO DE FIBRA DE COCO)

3 aplicaciones de 1,36 kg/ha: Pre-trasplante (mezcla con sustrato), fase de elongación y precosecha (fertirrigación con Ca²⁺).

APLICACIÓN

Equipo: Pulverizadores de barra con boquillas de abanico plano (tamaño de gota: 150-250 μm).

Horario óptimo: Amanecer (5-7 h) para maximizar absorción foliar y minimizar fitotoxicidad.

POSCOSECHA: TECNOLOGÍA DE CONSERVACIÓN

1

RECUBRIMIENTO ACTIVO

0,3 g/m² de FERTIZEL® en films de quitosano + ácido cítrico.

Control de Botrytis: Inhibe la germinación de esporas en un 70% (Fitt et al., 2020).

Preservación de humedad: Mantiene turgencia celular (aW 0,85) y firmeza ≥16 N/cm² durante 25 días (FAO, 2023).

EFICACIA ESPERADA

Parámetro FERTIZEL®		Método Tradicional	
Rendimiento (ton/ha)	$45 \pm 2 \text{ (regadio) / 28 (secano)}$ $35 \text{ (regadio) / 20 (secano)}$		
Longitud de tallo (cm)	27 ± 1,5 (vs. 22)	24 (fertilizantes NPK)	
Control de trips 65% reducción (preventivo) 30		30% (insecticidas piretroides)	
Vida útil (días) 25 ± 2 (vs. 15 en controles) 18 (atmósfera modific		18 (atmósfera modificada)	
Residuos (mg/kg)	0 (cumple UE, USDA NOP)	≤0,1 (lambda-cihalotrina)	

FERTIZEL® VS. OTROS PRODUCTOS

1. FERTILIZANTES NITROGENADOS CONVENCIONALES (NITRATO AMÓNICO)

Aspecto	FERTIZEL®	Fertilizantes Nitrogenados	
Eficiencia de N	↑50% (zeolitas retienen NO ₃ ·)	Lixiviación del 55% (contaminación)	
Calidad del suelo	↑ materia orgánica (+12% en 2 ciclos)	Acidificación (pH ↓0,3-0,5 unidades)	
Coste por ciclo	280-380 €/ha (4 aplicaciones)	450-600 €/ha (fertilizantes + riego)	

2. FUNGICIDAS E INSECTICIDAS QUÍMICOS

Aspecto	FERTIZEL®	Agroquímicos Tradicionales	Referencia
Mecanismo	Inducción de defensas + biocontrol	Inhibición enzimática (triazoles)	Lewis, 2021
Resistencia	Sin casos documentados	55% cepas resistentes (<i>Penicillium</i>)	FRAC, 2023
Seguridad alimentaria	Cumple normas ecológicas	LMRs hasta 0,5 mg/kg	Sánchez-Bayo et al., 2021

VENTAJAS COMPETITIVAS Y SOSTENIBILIDAD

FERTIZEL® redefine el cultivo de puerro mediante innovación para la horticultura de alto valor:

- 1
- TECNOLOGÍA MULTIFRACTAL

Integración de fotoactivación, bioquelación y gestión térmica.

- 2
- CALIDAD PREMIUM

Cumplimiento con estándares UE para tamaño, firmeza y residuos.

- 3
- RENTABILIDAD DEMOSTRADA

↑30% margen bruto (45 ton/ha vs. 35 tradicionales) + ↓40% dependencia de agroquímicos.

LIMITACIONES Y BUENAS PRÁCTICAS

- 1
- AJUSTES POR CLIMA
- En zonas con heladas frecuentes, aplicar 7 días antes del evento para reforzar cutícula.
- En suelos arcillosos, combinar con enmiendas orgánicas (compost) para sinergia con zeolitas.
- 2
- **COMPATIBILIDAD**

Evitar mezclas con herbicidas sulfonilureas (antagonismo con elongación celular).

3

ALMACENAMIENTO

Conservar en envases transpirables (HR 85-90%) para evitar condensación y podredumbres.

Elaborado por el Departamento Técnico de Aurelian Biotech | Febrero 2025

Descubra más en: https://biaurelian.com/

Palabras clave: Puerro, trips, Botrytis, zeolitas, poscosecha, agricultura sostenible.

REFERENCIAS CIENTÍFICAS

- 1. Agati, G. et al. (2020) Photoprotection by Mineral Particles. Frontiers in Plant Science.
- 2. Brewster, J.L. (2021) Onions and Other Alliums. CABI Publishing.
- 3. Fitt, B.D.L. et al. (2020) Botrytis Diseases in Allium Crops. Phytopathology.
- 4. Khan, M.A. et al. (2020) Soil Management for Leek Production. Agronomy Journal.
- 5. Marschner, H. (2012) Mineral Nutrition of Higher Plants. Academic Press.