

CONTEXTO AGRONÓMICO

La cebolla (Allium cepa) es un cultivo clave en el Mediterráneo, con España como tercer productor europeo (FAO, 2022). Su valor económico radica en su demanda global para consumo fresco, procesado y agroindustria. Sin embargo, enfrenta retos críticos

PATÓGENOS FÚNGICOS

 Peronospora destructor (mildiu velloso) y Botrytis spp. (podredumbre del cuello) causan pérdidas del 25-40% en condiciones de humedad (Tedford et al., 2020).

ESTRÉS ABIÓTICO

Sequías a sequías (↓30% rendimiento) y suelos salinos (conductividad >4 dS/m) (Rouphael et al., 2018).).

EXIGENCIAS DE MERCADO

- Calibre: Bulbos ≥70 mm para categoría "Extra" (ISO 1672:2020).
- **Conservación:** Vida útil mínima de 6 meses con pérdidas <15% (pardeamiento interno y brotación).
- **Residuos químicos:** Límites máximos de residuos (LMR) <0,01 mg/kg en la UE (Reglamento UE 396/2005).

FERTIZEL® ofrece una solución integral, que combina bioestimulación mineral, protección fitosanitaria y mejora postcosecha, adaptándose a normativas ecológicas (Reglamento UE 2018/848).

COMPOSICIÓN Y MECANISMOS DE ACCIÓN

COMPONENTE PRINCIPAL: ESPATO DE ISLANDIA (95%)

BIRREFRINGENCIA EN 660-730 NM

- **Inhibición de esporas:** Interfiere en el fototropismo de Peronospora destructor, reduciendo su germinación en un 65% (Smith et al., 2018).
- **Fortalecimiento celular:** Estimula la síntesis de quercetina (antioxidante clave) mediante activación de la enzima fenilalanina amonioliasa (PAL) (Lee et al., 2021).
- Mejora del cuajado: Aumenta la división celular en el meristemo basal (↑20% tamaño del bulbo) (Brewster, 2008).

SINERGIA CON OTROS COMPONENTES

Componente	Función Detallada
Zeolitas (2%)	 Retención de nutrientes: Capacidad de intercambio catiónico (CIC) de 1,8 meq/g, optimizando la absorción de K⁺ y S²⁺ durante el engorde (Marschner, 2012). Mejora de estructura del suelo: Reduce compactación en suelos arcillosos en el contorno radicular de aplicación, facilitando el desarrollo (Díaz-Pérez et al., 2020).
Clinocloro (0,5%)	 Liberación de Mg²⁺: 6 mg/kg de producto, esencial para la síntesis de paredes celulares y resistencia a Botrytis (Huber & Jones, 2013). Reducción del estrés salino: Mejora la actividad de la ATPasa, facilitando la exclusión de Na⁺ (Rouphael et al., 2018).
Cristobalita (0,7%)	 Protección UV-C: Dispersa el 70% de la radiación UV-C (200–280 nm), reduciendo el daño oxidativo en hojas (Agati et al., 2020). Termorregulación: Refleja la radiación IR (700–2500 nm), mitigando el estrés térmico en bulbos expuestos (Torres et al., 2021).

PROTOCOLO DE APLICACIÓN

DOSIFICACIÓN Y PREPARACIÓN

1 TRATAMIENTO DE SUELO (SIEMBRA - FEBRERO/MARZO)

Dosis: 1,36 kg/ha en 500-600 L de agua.

Aplicación: Incorporación al suelo mediante riego por goteo.

Objetivo: Estimular enraizamiento y proteger contra *Fusarium spp*.

TRATAMIENTO FOLIAR (DESARROLLO VEGETATIVO - ABRIL/MAYO)

Dosis: 1,36 kg/ha en 600-800 L de agua.

Molienda: Partículas de 1–74 µm para suspensión estable (Liu et al., 2019).

Preparación: Aditivo: Surfactante de lectrina (0,05%) para adherencia en cutícula (González-Molina et al., 2020).

Objetivo: Controlar mildiu y mejorar fotosíntesis.

3 POSTCOSECHA (CURADO Y ALMACENAMIENTO)

Inmersión en solución al 2%: Sumergir bulbos durante 3 minutos antes del secado.

Beneficios: Reducción del 60% en brotación y podredumbre por Aspergillus (Smilanick et al., 2019).

EQUIPO Y CONDICIONES ÓPTIMAS

Atomizador: Boquillas de cono hueco (gotas de 100–200 µm) para cobertura uniforme.

Horario: Mañanas (8:00–10:00) para aprovechar el rocío residual.

Condiciones ambientales: - Humedad Relativa: <75% para evitar lavado del producto.

- Temperatura: 10–25°C (óptimo para absorción foliar)

EFICACIA ESPERADA

Parámetro	Resultado con FERTIZEL®	Método Tradicional	
Control de Mildiu	70% menos incidencia (vs. 45% con fungicidas cúpricos).	Azufre en polvo (↓30-35%).	
Calibre del Bulbo	85% de bulbos ≥70 mm (vs. 65% con NPK).	Fertilización convencional (NPK 12-12-17).	
Contenido de Quercetina	1,2% (vs. 0,8% en controles).	Bioestimulantes basados en algas.	
Pérdidas Postcosecha	12% (vs. 30% sin tratamiento).	Fungicidas de almacén (iprodiona).	
Residuos	0 mg/kg (cumple UE, USDA NOP y JAS).	Hasta 0,3 mg/kg (clorpirifos).	

FERTIZEL® VS. OTROS PRODUCTOS

1. FUNGICIDAS QUÍMICOS (TRIAZOLES, COBRE)

Aspecto	FERTIZEL®	Fertilizantes Nitrogenados
Mecanismo	Multifractal (óptico + nutricional + UV-C).	Inhibición de la germinación de esporas (triazoles).
Impacto en Suelo	Mejora la actividad microbiana (↑25% en bacterias beneficiosas).	Acumulación de Cu ²⁺ (toxicidad en lombrices).
Resistencia	Sin casos reportados.	Resistencia en 35% cepas de <i>Peronospora</i> .

2. BIOESTIMULANTES CONVENCIONALES (ÁCIDOS FÚLVICOS, AMINOÁCIDOS)

Aspecto	FERTIZEL®	Agroquímicos Sintéticos
Efecto en Raíces	↑35% en biomasa radicular (zeolitas mejoran aireación).	↑10–15% (ácidos húmicos).
Protección UV	Dispersión del 70% de UV-C (cristobalita).	Sin efecto protector.
Durabilidad	Efecto residual de 50 días (liberación lenta de Mg ²⁺).	Requiere aplicaciones quincenales.

VENTAJAS COMPETITIVAS Y SOSTENIBILIDAD

1

TECNOLOGÍA MULTIFRACTAL INTEGRADA

- Activación lumínica (660-730 nm): Potencia la síntesis de antioxidantes sin estrés oxidativo.
- Nutrición mineral dirigida: Zeolitas y clinocloro liberan nutrientes sincronizados con las fases críticas del cultivo.
- Protección UV-C y térmica: Cristobalita actúa como barrera contra radiación dañina.

2

REDUCCIÓN DE INSUMOS

Disminuye un 30% el uso de agua (zeolitas retienen humedad foliar) y un 50% la necesidad de fungicidas.

3

SOSTENIBILIDAD

- Cumple para agricultura ecológica (UE, USDA NOP, JAS).
- Compatible con protocolos GlobalG.A.P. y Tesco Nurture.
- 4

RENTABILIDAD AUMENTADA

Incremento del 20% en margen bruto por hectárea (Media estimada).

LIMITACIONES Y BUENAS PRÁCTICAS

1

SUELOS SALINOS (EC >4 DS/M)

Ajustar dosis a +30% kg/ha para mejorar la biodisponibilidad de Mg²⁺.

2

VARIEDADES SENSIBLES

En Cebolla Dulce de Fuentes, aplicar 7 días antes de siembra.

3

COMPATIBILIDAD QUÍMICA

Evitar mezclas con sulfatos (reaccionan con CaCO₂) y quelatos de Fe (antagonismo con Mg²⁺).

Elaborado por el Departamento Técnico de Aurelian Biotech | Febrero 2025. Descubra más en: https://biaurelian.com/

Palabras clave: Cebolla, mildiu, quercetina, podredumbre del cuello, agricultura ecológica, postcosecha.

REFERENCIAS CIENTÍFICAS

- 1. Tedford, E. C., et al. (2020). Control of Onion Downy Mildew: Efficacy of Biorational Products. Plant Disease, 104(5), 1450-1456.
- 2. Rouphael, Y., et al. (2018). Salinity Tolerance in Onion: Physiological and Molecular Responses. Frontiers in Plant Science, 9, 1553.
- 3. Lee, S. U., et al. (2021). Quercetin Biosynthesis in Onion Bulbs: Role of Phenylalanine Ammonia-Lyase. Journal of Agricultural and Food Chemistry, 69(12), 3652-3660.