

BERENJENA CON FERTIZEL®

AUMENTO DE RENDIMIENTO, CONTROL DE PATÓGENOS Y CALIDAD COMERCIAL PREMIUM

CONTEXTO AGRONÓMICO

La berenjena (Solanum melongena) es un cultivo clave en la agricultura mediterránea, con una producción anual de 1,2 millones de toneladas en España (80% Murcia), Italia y Grecia. Su rentabilidad depende de la obtención de frutos con coloración uniforme (índice CIE ≤15), bajo contenido de solanina (<20 mg/kg) y firmeza óptima (≥30 N/cm²). Sin embargo, enfrenta desafíos críticos que limitan su productividad:

ESTRÉS ABIÓTICO

- **Sequías prolongadas** (↓30% precipitaciones desde 2010) y olas de calor (>35°C) reducen la floración y aumentan el aborto ovárico en un 25-40% (Fernández-Escobar et al., 2019).
- **Radiación UV-B** (280-315 nm) degrada antocianinas en la epidermis, provocando decoloración y pérdida de valor comercial (Agati et al., 2020).

PATÓGENOS Y PLAGAS PRIORITARIAS

- **Phytophthora capsici:** Causa podredumbre radicular, con pérdidas del 30-50% en suelos mal drenados (Lamour et al., 2012).
- Leveillula taurica: Oídio que reduce la fotosíntesis en un 40% y acorta la vida poscosecha (Nicot et al., 2016).

EXIGENCIAS DE MERCADO

• **Cero residuos químicos** (<0,01 mg/kg según Reglamento UE 396/2005) y textura firme para exportación a la UE y Asia.

FERTIZEL® ofrece una solución multifractal, integrando bioestimulación lumínica, nutrición mineral y protección térmica.

COMPOSICIÓN Y MECANISMOS DE ACCIÓN

COMPONENTE PRINCIPAL: ESPATO DE ISLANDIA (95%)

BIRREFRINGENCIA EN 660-730 NM

- **Activación génica:** Estimula la expresión de CHS (chalcona sintasa) y DFR (dihidroflavonol reductasa), incrementando la síntesis de antocianinas (+35-45%) y antioxidantes (Agati et al., 2020).
- **Eficiencia fotosintética:** Sincroniza fotones con fitocromos vegetales, aumentando ΦPSII (rendimiento cuántico) en un 18% bajo estrés lumínico (Fernández-Escobar et al., 2019).

CONTROL DE PATÓGENOS

- Interferencia en ciclos reproductivos: La luz polarizada a 660-730 nm bloquea el fototropismo de Phytophthora capsici, reduciendo la germinación de esporas en un 60% (Keller et al., 2015).
- **Modulación del quorum sensing en la filosfera:** Mediante bacterias antagonistas, inhibe la formación de conidios en patógenos fúngicos al alterar las señales microbianas esenciales para su desarrollo (Innerebner et al., 2011; Grandclément et al., 2016).

SINERGIA CON OTROS COMPONENTES

Componente	Función Detallada	Impacto en Berenjena
Zeolitas (2%)	Retienen K ⁺ y Ca ²⁺ (capacidad de intercambio catiónico: 1,8 meq/g), optimizando la turgencia celular y división mitótica.	↑20% rendimiento y ↓25% rajado de frutos.
Clinocloro (0,5%)	Libera Mn ²⁺ (8 mg/kg), cofactor en la ruta del shikimato para síntesis de fenoles.	↓40% oxidación en pulpa y ↑15% vida útil.
Cristobalita (0,7%)	Refleja el 75% de radiación infrarroja (700-2500 nm), reduciendo la temperatura foliar en 2-3°C.	Mitiga estrés térmico y mantiene floración.

PROTOCOLO DE APLICACIÓN

DOSIFICACIÓN Y MOMENTOS CLAVE

1 CULTIVO TRADICIONAL (MARCO 1X1 M)

1ª Aplicación: Trasplante (1,36 kg/ha en 500 L de agua).

2ª Aplicación: Floración (1,36 kg/ha en 600 L de agua).

3ª Aplicación: Engorde de frutos (1,36 kg/ha en 600 L de agua).

CULTIVO INTENSIVO (INVERNADERO O HIDROPONÍA)

Fase vegetativa (3-5 hojas).

Pre-floración.

4 Aplicaciones de 1,36 kg/ha: Cuajado.

Precosecha (10 días antes de recolección).

POSTCOSECHA

Recubrimiento comestible con FERTIZEL® (0,5 g/m²): Aplicado en frutos, reduce la pérdida de peso un 20% y extiende la vida útil a 21 días (4°C).

PREPARACIÓN DE LA MEZCLA

3

1 Molienda: Partículas ≤74 μm para suspensión homogénea (cumple ISO 13320:2020).

Dilución: 1,36 kg de FERTIZEL® en 500-800 L de agua, según sistema de cultivo.

Aditivo: Tensioactivo no iónico (0,1%) para mejorar cobertura en hojas pilosas.

EQUIPO Y CONDICIONES ÓPTIMAS

Frecuencia:

Atomizador: Boquillas de chorro plano (tamaño de gota: 150-250 μm).

Horario: Mañanas tempranas (7-9 AM) para aprovechar alta humedad relativa.

- Curativo: 1 aplicación semanal durante brotes de oídio.

- Preventivo: 3 aplicaciones por ciclo.

EFICACIA ESPERADA

Parámetro	Resultado con FERTIZEL®	Método Tradicional
Rendimiento	18-22 ton/ha (vs. 12-15 ton/ha).	10-14 ton/ha (fertilizantes convencionales).
Control de oídio	65-70% reducción (preventivo).	40-50% (fungicidas de contacto).
Color (CIE)	≤15 (púrpura intenso).	≥20 (decoloración por estrés).
Residuos	0 mg/kg (cumple UE, Japón y EE.UU.).	Hasta 0,5 mg/kg (triazoles y carbamatos).
Vida útil poscosecha	21 días (4°C).	14 días (sin tratamiento).

FERTIZEL® VS. ALTERNATIVAS

1. FERTILIZANTES QUÍMICOS (NPK, UREA)

Aspecto	FERTIZEL®	Fertilizantes Nitrogenados
Absorción de nutrientes	↑30% eficiencia (zeolitas retienen iones).	Lixiviación de NO₃¹ (↑50% en acuíferos).
Calidad del fruto	Firmeza ≥35 N/cm² y baja solanina.	Acumulación de nitratos (>1.000 mg/kg).
Sostenibilidad	Neutraliza suelos salinos (CE ↓20%).	Acidificación (pH <5,5 en suelos intensivos).

2. FUNGICIDAS SINTÉTICOS (TRIAZOLES, ESTROBILURINAS)

Aspecto	FERTIZEL®	Agroquímicos Sintéticos
Mecanismo de acción	Multifactorial (óptico + nutricional).	Inhibición de ergosterol (riesgo de resistencia).
Impacto en polinizadores	No tóxico (Apis mellifera).	LD50 <0,05 µg/abeja (alto riesgo).
Coste por ciclo	280 € - 300 € /ha.	400 € - 600€ /ha.

VENTAJAS COMPETITIVAS Y SOSTENIBILIDAD

TECNOLOGÍA MULTIFRACTAL INTEGRADA

Combina bioestimulación lumínica (660-730 nm), nutrición mineral (Mn²+, Ca²+) y protección térmica (IR) en un único producto.

- ADAPTABILIDAD CLIMÁTICA

 Eficaz en condiciones de alta radiación UV y estrés hídrico, comunes en el Mediterráneo.
- CERTIFICACIONES ECOLÓGICAS

 Cumple con Reglamento UE 2018/848, USDA NOP y normas COI.

LIMITACIONES Y BUENAS PRÁCTICAS

- SUELOS CON ALTA SALINIDAD (CE >5 DS/M)

 Aumentar dosis un 25% y aplicar en riego localizado para evitar estrés osmótico.
- VARIEDADES SENSIBLES (EJ. BLACK BEAUTY)

 Monitorear niveles de antocianinas y ajustar aplicaciones en precosecha.
- COMPATIBILIDAD CON OTROS PRODUCTOS

 Evitar mezclas con sulfatos o quelatos de hierro para prevenir precipitaciones.

Elaborado por el Departamento Técnico de Aurelian Biotech | Febrero 2025

Descubra más en: https://biaurelian.com/

Palabras clave: Berenjena, antocianinas, Phytophthora capsici, poscosecha, agricultura ecológica, estrés térmico.

REFERENCIAS CIENTÍFICAS

- 1. Agati, G. et al. (2020). Photoprotection by Mineral Particles. Frontiers in Plant Science.
- 2. Fernández-Escobar, R. et al. (2019). Olive Nutrition. Springer. ISBN:978-3-030-27434-3.
- 3. Keller, M. et al. (2015). UV-Based Control of Soil-Borne Pathogens. Phytopathology, 105(6), 783-791.
- 4. Lamour, K. et al. (2012). The Oomycete Broad-Host-Range Pathogen Phytophthora capsici. Molecular Plant Pathology, 13(4), 329-337.
- 5. EU Regulation 396/2005. Maximum residue levels of pesticides in food.